关灯
护眼
字体:

391章 启动物理室工作

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

    沈奇自己也没闲着,他着手诺贝尔物理学奖的相关准备工作。

    物理13级升14级的条件之一,需要沈奇获得诺贝尔物理学奖。

    诺贝尔物理学奖很难搞啊,沈奇查阅了1980年至今的诺贝尔物理学奖课题成果,大部分是偏应用的,少数基础物理研究的获奖课题也有实验或测量数据支撑。

    瑞典皇家科学院颁发诺贝尔物理学奖的理由,相关话术大致可以归纳为两类:

    一、某某科学家发现了什么什么、测量到了什么什么,以及对什么什么课题的开创性实验研究。

    二、某科学家在某领域做出了先驱性的贡献,这些研究成果导致了某某现象或对象的发现。

    历史数据显示,以第一类理由获奖的大多是实验物理学家、应用物理学家,以第二类理由获奖的大多是理论物理学家。第一类获奖者的数量是第二类的十倍。

    很明显,光靠脑补很难发现什么、测量到什么,沈奇决定从第二类途径入手,提供可被当代实验设备或观测仪器所验证的理论原理。

    可介入的领域有一些,凝聚态物理、天体物理、宇宙学、空间科学等等。

    物理学发展到今天,凭借相当成熟的经典物理课题获得诺奖几乎是不可能的,除非破解尚未解决的经典难题。

    前沿科学领域是热门,人类对未知或者一知半解的领域总是充满好奇。

    沈奇数理研究中心物理室暂无一线研究员到位,沈奇亲自主持物理室的科研工作,先试试水,做个小项目练手。

    在普林斯顿工作期间,沈奇曾发表过一片凝聚态物理论文《基于球面稳定同伦群的缺陷拓扑学研究》,刊登在《物理评论快报》上。

    凝聚态物质的拓扑相变和拓扑相是近年来的热门,美英三位物理学家因相关研究成果,联合获得2016年诺贝尔物理学奖。

    沈奇认为自己几年前发表的那篇PRL凝聚态物理论文还有进一步完善的空间,他开始策划《基于球面稳定同伦群的缺陷拓扑学研究》的续集。

    在沈奇的规划中,这个系列课题由三部曲组成,第一部《基于球面稳定同伦群的缺陷拓扑学研究》,在亚当斯谱序列的基础上加以改进,在求解同伦群的过程中,计算出了一个新的结果,h0b1^4∈E2^9,4p^2q+q在亚当斯谱序列中是永久循环。

    第一部几乎是纯理论性的研究,第二部,沈奇暂且命名为《缺陷拓扑学研究在凝聚态物质中的应用拓展》,理论研究为主,理论结合应用。

    大体思路早就有了,有大致的项目课题框架,预估的学术影响和效果,需要的研究经费,就可以申请立项。

    沈奇开始编写《缺陷拓扑学研究在凝聚态物质中的应用拓展》的立项报告,他的数理研究中心进入数学、物理双线作战的实战阶段。

    就在沈奇起草数理研究中心第一个物理项目的立项报告的同时,美国方面传来消息,《体系化和霍奇猜想》发表在了《数学年刊》上,以专刊的形式出版。

    SLW体系的建立和霍奇猜想的证明,正式入选《时代》年度十大科学进展。

    在全球范围内,《时代》评选的本年度十大科学研究成果,其中四项来自生物医药领域,三项来自物理学,两项来自化学,数学领域的只有一项。

&... -->>
本章未完,点击下一页继续阅读
上一章目录下一页

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”